Оглавление

  • Двухпоршневой и малоразмерный двигатель
  • Реактивные, турбореактивные двигатели, их виды и принцип работы
  • Применение
    • В промышленности и народном хозяйства
    • В транспортной сфере
  • Плюсы и минусы двигателя
  • Турбореактивный двигатель с форсажной камерой
  • Отличительные черты газотурбинных двигателей
  • Устройство и принцип работы агрегата
  • Устройство и принцип работы двигателя
  • Примечания
  • Проблемы разработки малых ТГД
  • Виды газотурбинных двигателей
  • Авиационный ГТД Климов ГТД-350 для вертолета Ми-2
    • Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:
    • Общая схема
  • Малые ГТД области применения
    • Автомобильная промышленность
    • Малая авиация
  • Агрегат со свободно поршневым генератором
  • Виды газотурбинных двигателей

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Реактивные, турбореактивные двигатели, их виды и принцип работы

  • 1
  • 2
  • 3
  • 4
  • 5

( 36 Votes )

При всей своей мощи и кажущейся невероятной сложности – ракетные и турбореактивные двигатели на самом деле имеют довольно простой принцип работы.

Самым простым является ракетный двигатель. Начнем с него.

Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении. Наглдный пример реактивной силы в повседневной жизни это обычный воздушный шарик. Если его надуть и отпустить, не завязывая, то шарик будет двигаться за счет реактивной силы, создаваемой вылетающим из него  воздухом.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (ТРД) работает по тому же принципу, что и ракетный, за исключением того, что в нем сжигается атмосферный кислород.

Сходства:Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.

Различия:На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.

Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.

Турбовинтовой двигатель (ТВД).

Принцип работы точно такой же как и у ТРД, за исключением того, что на валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина.Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).

ТВД сочетают в себе преимущества ТРД на больших скоростях полета (способность создавать большую тягу при относительно небольшой массе и габаритах двигателя) и ПД на малых скоростях (низкие расходы топлива) и, обладая высокой топливной эффективностью, широко применяются в силовых установках имеющих большую грузоподъемность и дальность полета самолетов (летающих на скоростях 600–800 км/ч) и вертолетов.

Турбовентиляторный двигатель (ТВлД)

Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.

Новости СМИ2

kaz-news.ru | ekhut.ru | omsk-media.ru | samara-press.ru |

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем
Десантное судно «Зубр»
Читайте также  Как связаны воздушный змей и самолет?

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Турбореактивный двигатель с форсажной камерой

Рис. 2. Схема ТРДФ. 1 – турбокомпрессор; 2 – блок форсажной камеры; 3 – сопло; 4 – форсажная камера; 5 – стабилизаторы пламени.

Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е. с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры. Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц. forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_{дв}$ и его габариты; стартовая тяга двигателя $P_{дв0}$; удельная масса двигателя $g_{дв} = m_{дв}/P_{дв0}$ (кг/Н); удельный расход двигателя $C_р$,  показывающий расход массы топлива на создание 1Н  тяги в час, [кг/(Н×ч)]; высотно-скоростные  характеристики  $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта. При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии. ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности. Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум. Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье ).

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Читайте также  Крупный оператор деловых авиалиний осуществляет экспансию в Японию

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

 

Примечания

  • ↑ .
  • ↑ Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  • Александр Грек. Человек, который купил космодром // Популярная механика. — 2017. — № 11. — С. 54.
  • Андрей Суворов. Ядерный след // Популярная механика. — 2018. — № 5. — С. 88-92.
  • В этой статье не хватает ссылок на источники информации.
    Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 17 ноября 2011 года.
    Эта статья требует оформления и доводки.
    В этой статье необходимо:

  • улучшить стиль написания статьи;
  • проработать структуру (разделы) статьи;
  • проставить и заполнить карточки, оформить статью в целом с использованием вики-разметки;
  • аккуратно разместить и подписать изображения;
  • сделать ссылками ключевые слова и даты в тексте;
  • подписать сноски и ссылки.
  • Если вы желаете оформить данную статью, пожалуйста, отредактируйте данный шаблон в тексте статьи, дописав в него

    Двигатели
    Двигатели внутреннего сгорания (кроме турбинных)
    Возвратно-поступательные
    Количество тактов
    • Двухтактный двигатель

      • двигатель Ленуара
    • Четырёхтактный двигатель
    • Пятитактный двигатель

      • роторный
    • Шеститактный двигатель
    Расположениецилиндров
    • Рядный двигатель

      • U-образный двигатель
    • Оппозитный двигатель
    • Н-образный двигатель
    • V-образный двигатель
    • VR-образный двигатель
    • W-образный двигатель
    • Звездообразный двигатель

      • вращающийся
    • X-образный двигатель
    Типы поршней
    • Свободно-поршневые
    • Двигатель со встречным движением поршней

      • дельтообразный
    • Аксиальные
    Способвоспламенения
    • Дизельные
    • Компрессионные карбюраторные
    • Калильно-компрессионный
    • Калильные карбюраторные
    • Батарейное зажигание
    • Магнето
    • Дуговые и искровые свечи
    Роторные
    • Двигатель Ванкеля
    • Орбитальный двигатель

      • двигатель Сарича
    • Роторно-лопастной двигатель Вигриянова
    Комбинированные
    • Гибридные
    • Двигатель Хессельмана
    Воздушно-реактивные
    Основные типы
    Бескомпрессорные
    • Прямоточные
    • Пульсирующие
    Турбореактивные
    • Турбовентиляторные (двухконтурные)
    • Турбовинтовые
    • Турбовинтовентиляторные
    • Турбовальные
    Модификациии гибридные системы
    • Мотокомпрессорный воздушно-реактивный двигатель
    • Гиперзвуковые прямоточные
    См. также: Газотурбинные двигатели
    Ракетные двигатели
    • Выбрасывающий
    • Стартовый
    • Разгонный
    • Маршевый
    • Маневровый
    Химические
    Жидкостные
    • Закрытого цикла
    • Открытого цикла
    • С фазовым переходом
    • Двигатель Вальтера
    Другие
    • Твердотопливные
    • Топливно-гибридные
    Ядерные
    • Термоядерные
    • Газофазно-ядерные
    • Твёрдофазно-ядерные
    • Солевые
    Электрические
    • Плазменные

      • электромагнитный ускоритель VASIMR
    • Ионные
    • Электротермические
    • Электростатические
    Другие
    • Клиновоздушный
    • Двигатель Бассарда
    Двигатели внешнего сгорания
    • Паровая машина
    • Двигатель Стирлинга
    • Пневматический двигатель
    Турбины и механизмы с турбинами в составе
    По виду рабочего тела
    Газовые
    • Газотурбинная установка
    • Газотурбинная электростанция
    • Газотурбинные двигатели
    Паровые
    • Парогазовая установка
    • Конденсационная турбина
    Гидравлические турбины
    • Пропеллерная турбина
    • Гидротрансформатор
    По конструктивным особенностям
    • Осевая (аксиальная) турбина
    • Центробежная турбина

      • радиальная
      • диагональная
    • Радиально-осевая турбина (турбина Френсиса)
    • Поворотно-лопастная турбина (турбина Каплана)
    • Ковшовая турбина (турбина Пелтона)
    • Турбина Турго
    • Ротор Дарье
    • Турбина Уэльса
    • Турбина Тесла
    • Сегнерово колесо
    Электродвигатели
    • Постоянного тока
    • Переменного тока
    • Многофазные
    • Трёхфазные
    • Двухфазные
    • Однофазные
    • Универсальные
    Асинхронные
    • Конденсаторный двигатель
    Синхронные
    • Бесколлекторные (Вентильный двигатель)
    • Коллекторные
    • Вентильные реактивные
    • Шаговые
    Другие
    • Линейные
    • Гистерезисные
    • Униполярные
    • Ультразвуковые
    • Мендосинский мотор
    Биологические двигатели
    Моторные белки
    • Актин
    • Динеин
    • Кинезин
    • Миозин
    • Тропомиозин
    • Тропонин
    • Флагеллин
    См. также
    Вечный двигатель
    Мотор-редуктор

    Проблемы разработки малых ТГД

    При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

    Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата

    Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

    Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

    Виды газотурбинных двигателей

    Среди основных видов, используемых при производстве легковых автомобилей, называют два типа двигателей:

    • Двухвальный с теплообменником. Такой тип можно встретить чаще всего. Использование таких двигателей улучшает динамические свойства машины и сводит к минимуму количество ступеней в коробке передач. Автомобили с реактивными двигателями такого типа при разгоне практически не требуют переключения коробки передач. Среди недостатков можно назвать увеличение массы агрегата за счет использования дополнительных деталей (воздуховода и теплообменника).

    Двухвальный газотурбинный двигатель

    • Двигатель со свободно-поршневым газовым генератором. Такой тип считается самым перспективным в плане . Схема конструкции двигателя представляет собой блок, который объединяет двухтактный дизель и поршневой компрессор.

    Принцип работы свободно-поршневого газотурбинного двигателя

    Авиационный ГТД Климов ГТД-350 для вертолета Ми-2

    Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

    МИ-2

    На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

    Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

    Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

    — вес: 139 кг;
    — габариты:  1385 х 626 х 760 мм;
    — номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт);
    — частота вращения свободной турбины: 24000;
    — диапазон рабочих температур -60…+60  ºC;
    — удельный расход топлива 0,5 кг/кВт час;
    — топливо — керосин;
    — мощность крейсерская:  265 л.с;
    — мощность взлётная: 400 л.с.

    Читайте также  Сколько времени лететь до Дели

    В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

    ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

    Общая схема

    Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

    В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где  меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

    Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

    Малые ГТД области применения

    Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии.
    — Мощность микротурбин составляет 30-1000 кВт;
    — объем не превышает 4 кубических метра.

    Среди преимуществ малых ГТД можно выделить:
    — широкий диапазон нагрузок;
    — низкая вибрация и уровень шума;
    — работа на различных видах топлива;
    — небольшие габариты;
    — низкий уровень эмиссии выхлопов.

    Отрицательные моменты:
    — сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием);
    — силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

    На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

    Коротенькое видео, использования турбовального двигателя для электрогенератора.

    За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

    Автомобильная промышленность

    Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

    По иному дела обстоят в оборонной промышленности

    Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков

    И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

    Малая авиация

    На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

    Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

    В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

    На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

    Агрегат со свободно поршневым генератором

    На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

    Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

    Виды газотурбинных двигателей

    По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

    Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

    Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

    Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

    Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

    Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

    Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.